
Arguments

Python has some nifty things you can do with the
arguments to a function. Although these apply to
all functions, they are particularly useful for class
constructors.

First, you are allowed to provide default values for
arguments. If you don't supply a value for an
argument, the system uses the default value.

For example, consider the function

def f(x, y = 2, z = 3):
return x+y*z

If we call this with f(4, 5, 6) then 4 goes in for x, 5
for y and 6 for z; it returns 34.

On the other hand, if we call it with f(4, 5) then 4
goes in for x, 5 for y, and the system uses the
default 3 for z; the function returns 19.

Still with

def f(x, y = 2, z = 3):
return x+y*z

if we call f(4), then 4 goes in for x and the system
uses defaults 2 for y and 3 for z; it return 10.

Finally, if we try to call f() then there is no value
given for x and x has no default value, so we get an
error message.

Once you supply one default value for an
argument, all of the remaining arguments must
have default values; you are not allowed to create
something like

def f(x, y=5, z)

When you call a function the arguments you
supply are applied to the function parameters
from left to right; any remaining parameters need
to have default values.

Sometimes functions have lots of default arguments
and you only want to change one. You are allowed
to specify arguments in a call. For example,
consider

def f(x, y=2, z=3):
return x+y*z

We could call this with
f(5, z=4)

and the result will be 13: 5 goes in for x, the default
2 for y, and 4 for z.

The other nifty thing Python allows you to do with
variables is to test the type of value the variable
currently contains. The function that does this test
is

isinstance(<value>, <type>)

The types you can use with this are
int
float
str (for strings)
list
and any classes you create

For example we can test if the value of variable z is
a string with

if isinstance(z, str):
do something with z as a string

When you are coding you probably know the kinds
of values you have placed in variables. Where
isinstance() is useful is in functions, where you can
use it to allow the same function to be called with
different kinds of variables.

For example, in Lab 09 we create a class Soundwave.
The Soundwave constructor takes 4 numerical
arguments that we use to compute values of a list
self.samples. These arguments all have default
values, so we might create a Soundwave object with

Soundwave(0, 1.0, 1.0, 100)
or even with

Soundwave()

However, we sometimes want to construct a
Soundwave object from an audio file, in which case
we construct the self.samples list in a different way.

This means the body of the constructor looks like this.
The first argument to the constructor is called
"halftones". The constructor starts
if isinstance(halftones, str):

self.samples = <something with file halftones>
else:

self.samples = <something with the arguments to the constructor>

All of the following are ways to build Soundwaves:
Soundwave(0, 1.0, 1.0, 100) # makes a specific soundwave

Soundwave() # makes an empty soundwave
Soundwave("mozart.wav") #makes a soundwave from the

file "mozart.wav"

